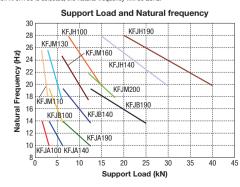
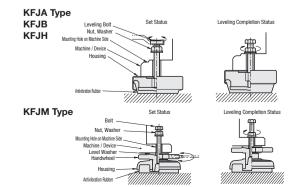

Antivibration Adjustment Pads

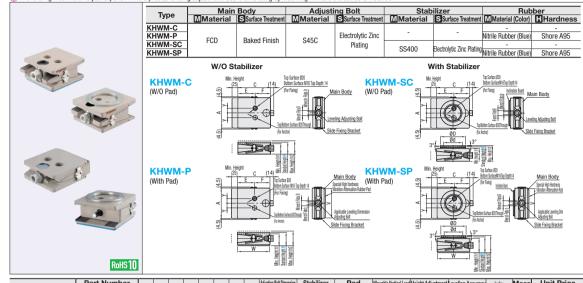
For Round Type, turn the thread tip to adjust height. For Square Type, turn the handwheel to adjust height Housing



	Part Number		L	Vertical Load Range (kN)		н	(h)	d	м	Tip Dimension of Screw		Amount	Thickness	Constant	Unit Price	Volume Discount Rate
	Type	D		Min.	Max.					b	l	(mm)	(mm)	(kN/mm)	1 ~ 9 pc(s).	10~30
	IZE IA	100	90 120 200	1.55	3.1	L+31	39	78	12	8	7.5	18	L-48	1.2		
	KFJA (Light Load)	140	90 120 200	3.1	6.3	L+37	47	114	16	10	8.5	19	L-55	2.4		
		190	120 200	6.3	12.5	L+44	56	158	20	12	0.5	25	L-69	4.8		
	KFJB (Medium Load)	100	90 120 200	3.15	6.3	L+28	39	78	12	8	7.5	18	L-51	4.6		
Round		140		6.3	12.5	L+37	47	114	16	10	8.5	19	L-55	9.2		
		190	120 200	12.5	25.0	L+44	56	158	20	12	0.0	25	L-69	18.3		
	KFJH (Heavy Load)	100	90 120 200	7.5	15.0	L+17	35	78	12	8	7.5	22	L-62	23.0		
		140		15.0	30.0	L+21	42	114	16	10	8.5	24	L-71	46.0		
		190	120 200	20.0	40.0	L+28	54	158	20	12	0.0	27	L-84	62.0		
Square		110	85 200	1.4	2.8	L+30	47	97	12	8	7.5	15	L-40	3.7		
	KFJM	130	110 200	2.8	6.0	L+31	51	117	16	10		20	L-50	7.4		
	KFJIVI	160	110 200	6.0	12.0	L+41	65	146	10	10	8.5	24	L-55	14.7		
		200	130 220	12.0	18.0	L+47	76	185	20	12		27	L-65	23.0		


How to Select

- ①Calculate applied load per antivibration mount. Ex.) When an object of 40KN load is supported by 4 supporting points
- ②Calculate frequency for supported object
- As the frequency is the number of vibration per second,
- Ex)When motor speed is 3000rpm: 3000/60(s)=50Hz
- Select an antivibration mount with natural frequency less than half of the frequency of vibration sources (motors, etc.) 50/2=25Hz
- If the vibration is square root of 2x or less, it is within the range of resonance. Please select again.
- 3The natural frequency can be found by following along the mount's applied load axis to reach the intersections with the graph lines of respective part numbers. Ex.) In the case of motor with 10KN and 50Hz, when KFJM160 is selected, the natural frequency will be 20Hz. When KFJH100 is selected, the natural frequency will be 25Hz.


■Installation Method

- 1 Jack up the machines and devices (sling up) to place the mounts under the holes
- (For KFJM type, place a level washer on the mounts, and lower the machines and devices.) 2 Insert a leveling bolt attached with a nut and a washer into the mount from the top.
- 3 Turn the leveling bolt with a wrench to adjust the level of the machine
- (For KFJM, turn the handwheel with a tool to adjust level of the machine.)
- 4 After horizontal level has been obtained, tighten the nut and washer
- To prevent concentration of load, adjust each mount in sequence in small amounts to
- For KFJM, the leveling will be smoother if grease is applied on the contact surface of the handwheel and the level washer.

Leveling Mounts

This leveling mount allows you to perform more precise leveling adjustment. Use it for leveling by mounting it where the device is installed.

			Part Number		С	н	h1	h2	v	_	-	Adjusting B	olt Dimension	Stat	ilizer	Pa	ad	Allowable Vertical Load	Height Adjustment	Leveling Accuracy	Incline	Mass	Unit I	Price
			Н	^	_			112	'	_	г	В	b	D	d	W	V	(kN)	(mm)	(mm/rev.)	Adjustment Angle	(kg)	1 ~ 4 pc (s).	5 ~ 10 pcs.
	W/O	KHWM-C	47	110	115	47	41	53		64	51			-				50	±6	0.24		3.3		
W/O OL 1 T	Pad		51	130	140	51	45	57		74	66	22 1	12				_	70				5.4		
W/O Stabilizer	With	KHWM-P	52	110	115	52	46	58	20	64	51					111	106	16			-	3.4		
	Pad	KHWWI-P	56	130	140	56	50	62		74	66					136	126	25				5.5		
	W/O	KHWM-SC	56	110	115	56	50	62	20	64	51	22 1	12		78			50				3.6		
With Stabilizer	Pad	KHWW-3C	62	130	140	62	56	68		74	66			108		- -	70	1		±3°	6.0			
With Stabilizer	With	KHWM-SP	61	110	115	61	55	67		64	51			100		111	106	16			±3	3.7		
	Pad	KHWIVI-SP	67	130	140	67	61	73		74	66					136	126	25				6.1		

Grease Characteristics

Flu Per-F

<Bottom Pad>

How to Mount

- This leveling mount allows for installation of devices and apparatuses and to adjust the heights by the effect of integrated special springs.

 Because the adjusting bolt head will not move back and forth during leveling
- adjustment, this will improve your work efficiency.

 Low particle generation fluorinated grease is applied to Standard Type, which is suitable for clean environments. (Clean Room Class is not guaranteed.) With Pad Type has an attenuation effect for self-induced vibration. Also

With Stabilizer Type is applicable to the floor inclination (±3°) to keep the

Rubber Pad Characteristics Unit HDR Rubber pecific Gravity ensile Strength

Tests of tensile strength and elongation are conducted based on the JIS Standards K6251.

Name	Item	Contained Amount	Unit	Measurement Method	Conditions		
orinated Resin	Thickener	-	-	-	-		
luoro Polyether Oil	Base Oil	-	-	-	-		
Dropping Poir	nt	None	-	JIS K-2220 5, 4	-		
Evaporation Amo	ount	≤0.2	mass%	Proprietary scheme			
			mass%		200°C, 24h		
Oil Separation	n	≤10	mass%	Proprietary scheme	200 6, 2411		

<Example of Stabilizer>

Major Application

- FPD Manufacturing Processor Semiconductor Manufacturing Processor · Precision Metal Processor Large Precision Measuring Instrument Other Devices and Apparatuses
- 10. The flange, frame and the floor of the device on which leveling mounts are to be mounted require adequate rigidity.
 2 Place a device gently onto the leveling mount. When mounting a leveling mount on the device with holts, align the mounting holes of the device and the tap position of the leveling mounts. Next, insert a hex bolt, a hex nut and a plain washer into a mounting hole of the device and screw them in the tap Tighten the hex nuts and plain washers after the leveling adjustment of step §. Please note
- that if the support load is extremely light, the leveling mount may slant due to the over-tightening of nuts. (a) Turn the hex head (hole) on the front side of the leveling mount by a tool and adjust the level of the device. Turn clockwise to increase the level and counterclockwise to decrease.

(5) Adjust each leveling mount gradually to avoid load concentration on the leveling mount

<Mounting Example>

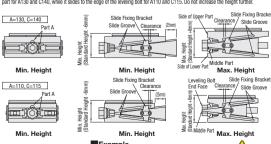
Bolt, Nut and Washer Selection Example

		IVI	Selected Bolt			
Part Number	How to	Screw-In	D	Nut	Washer	Selected Bolt
Part Number	Mount	Depth	Base Thickness	LBNR16-	FWS16-	RCB16-
		(Overall Depth)	HILKHESS	P.240	P.115	P.190
KHWM-P52		53				
KHWM-P56	Device Mounting	57	Arbitrary		2.5	
KHWM-SP61		62				RCB16- L
KHWM-SP67		68		13		
KHWM-C47		53				
KHWM-C51		57				
KHWM-SC56		62				
KHWM-SC62		68				

About Anchor Bolts

AnchorPlease prepare the size M16 (coarse) mounting bolts on your side.

Length of anchor bolts ≥ device flange/frame thickness + depth of screwed-in leveling mount (total depth) +


hex nut and plain washer thickness. · Anchor bolt mounting holes can be ignored when not necessary.

Leveling Adjustment Range

Make sure to keep the leveling adjustment range within the operating range (±6mm) as shown in the above table. Verify that the approximately 1mm of clearance is provided at the part A shown below for the minimum height. This clearance is to avoid

interference between the slide groove and the slide fixing bracket.

Note that if the level is lower, the casted main body will be in contact and the slide fixing bracket will come off from the slide groove, which will cause damage or breakage. For the maximum beight, the tip of the middle part slides to the side edge of the upper/lowe part for A130 and C140, while it slides to the edge of the leveling bolt for A110 and C115. Do not increase the height further,

Other Cautions Jack up the device at a certain heigh previously, install the leveling mounts and make a final adjustment using the leveling mounts. The middle part (wedge shape) moves back and forth during leveling adjustment. Keep the

clearance of at least 30mm on the back of the Please pay close attention to safety measu